Lines and Exponential Functions

Finite Math

6 February 2017

Finite Math

Lines and Exponential Functions

6 February 2017 1 / 20

Э

nac

イロト イポト イヨト イヨト

Definition (Line)

A line is the graph of an equation of the form

Ax + By = C

where not both of A and B are equal to zero (i.e., if A = 0, then $B \neq 0$ and vice-versa).

Э

There are two common ways of graphing lines: by **finding intercepts** and by **using the slope and a point**. We will focus on the method of finding intercepts here in the notes. You can read about using the slope to graph a line in the textbook.

-

<ロト <回ト < 注ト < 注ト

Definition (Intercept)

A point of the form (a, 0) on a line is called an x-intercept and a point of the form (0, b) is called a y-intercept.

<ロト <同ト < 国ト < 国ト

Definition (Intercept)

A point of the form (a, 0) on a line is called an x-intercept and a point of the form (0, b) is called a y-intercept.

Every line will have at least one intercept, but most have two. There are three special cases in which the line has only one intercept: if A = 0, B = 0, or C = 0. We will return to these special cases in a little bit.

Assume the line Ax + By = C has both an *x*- and *y*- intercept, we find them as follows:

э

nac

<ロト <回ト < 注ト < 注ト

Assume the line Ax + By = C has both an *x*- and *y*- intercept, we find them as follows:

 To find the *x*-intercept, we set y = 0 in the equation of the line and solve for x. Symbolically, this means that

$$x=rac{C}{A}.$$

-

<ロ> <同> <同> < 同> < 同> < □> < □> <

Assume the line Ax + By = C has both an *x*- and *y*- intercept, we find them as follows:

 To find the x-intercept, we set y = 0 in the equation of the line and solve for x. Symbolically, this means that

$$x=rac{C}{A}.$$

 To find the *y*-intercept, we set x = 0 in the equation of the line and solve for *y*. Symbolically, this means that

$$y=\frac{C}{B}$$

Graphing with Intercepts

To graph a line using intercepts, we plot the two intercepts in the *xy*-plane, and draw a line through the points:

-

イロト イポト イヨト イヨト

Graphing with Intercepts

To graph a line using intercepts, we plot the two intercepts in the *xy*-plane, and draw a line through the points:

Example

Graph the line 4x - 3y = 12 using intercepts.

< D > < B > < E > < E >

Special Situation for Ax + By = C

If C = 0, you'll find that solving for the *x*-intercept as above gives (0, 0) and solving for the *y*-intercept also gives (0, 0).

-

<ロト <回ト < 注ト < 注ト

Special Situation for Ax + By = C

If C = 0, you'll find that solving for the *x*-intercept as above gives (0, 0) and solving for the *y*-intercept also gives (0, 0). This means that both the *x*- and *y*- intercepts are at the origin. So, to graph the line Ax + By = 0, we need to come up with another point.

Special Situation for Ax + By = C

If C = 0, you'll find that solving for the *x*-intercept as above gives (0, 0) and solving for the *y*-intercept also gives (0, 0). This means that both the *x*- and *y*- intercepts are at the origin. So, to graph the line Ax + By = 0, we need to come up with another point. Just pick any number other than 0 for *x* or *y*, then solve for the other variable.

Graphing a Line Through the Origin

Example

Graph the line 2x + 3y = 0.

3

nac

イロト イポト イヨト イヨト

The cases when A = 0 or B = 0 in Ax + By = C correspond to horizontal and vertical lines, respectively.

3

イロト イポト イヨト イヨト

The cases when A = 0 or B = 0 in Ax + By = C correspond to horizontal and vertical lines, respectively. If A = 0, we end up with the line $y = \frac{C}{B}$, which is a horizontal line where every *y*-value is $\frac{C}{B}$. A special one of these is when *C* is also zero so we get the equation y = 0. The graph of this line is the *x*-axis.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Here are the graphs of y = 2 (red) and y = -3 (green).

= nar

イロト イポト イヨト イヨト

The cases when A = 0 or B = 0 in Ax + By = C correspond to horizontal and vertical lines, respectively. If B = 0, we end up with the line $x = \frac{C}{A}$, which is a vertical line where every *x*-value is $\frac{C}{A}$. A special one of these is when *C* is also zero so we get the equation x = 0. The graph of this line is the *y*-axis.

Here are the graphs of x = 2 (red) and x = -3 (green).

∍

Sac

イロト イポト イヨト イヨト

Now You Try It!

Example

Graph the following lines:		
(a)		
	2x - y = 3	
(b)		
	2x+4y=8	
(c)		
	3x - 2y = 0	
(d)		
	6 <i>x</i> = 18	

3

5900

ヘロト ヘロト ヘビト ヘビト

Definition (Exponential Function)

An exponential function is a function of the form

$$f(x) = b^x, b > 0, b \neq 1.$$

b is called the base.

= nar

Why the restrictions on *b*?

3

5900

<ロ> <同> <同> <同> < 同> < 同>

Why the restrictions on b?

If b = 1, then f(x) = 1^x = 1 for all x values. Not a very interesting function!

3

イロト イポト イヨト イヨト

Why the restrictions on b?

- If b = 1, then f(x) = 1^x = 1 for all x values. Not a very interesting function!
- As an example of the case when b < 0, suppose b = -1. Then

$$f\left(\frac{1}{2}\right) = (-1)^{1/2} = \sqrt{-1} = i$$

an imaginary number! This kind of thing will always happen if *b* is negative.

Why the restrictions on b?

- If b = 1, then f(x) = 1^x = 1 for all x values. Not a very interesting function!
- As an example of the case when b < 0, suppose b = -1. Then

$$f\left(\frac{1}{2}\right) = (-1)^{1/2} = \sqrt{-1} = i$$

an imaginary number! This kind of thing will always happen if *b* is negative.

• If b = 0, then for negative x values, f is not defined. For example,

$$f(-1) = 0^{-1} = \frac{1}{0} =$$
 undefined.

Section 2.5 - Exponential Functions

Graphing Exponential Functions

Example

Sketch the graph of $f(x) = 2^x$.

э

nac

イロト イポト イヨト イヨト

Graphing Exponential Functions

When b > 1, the graph of $f(x) = b^x$ has the same basic shape as 2^x , but may be steeper or more gradual.

-

<ロト <回ト < 注ト < 注ト

Graphing Exponential Functions

When b > 1, the graph of $f(x) = b^x$ has the same basic shape as 2^x , but may be steeper or more gradual. Let's see what happens when b < 1.

-

< ロ > < 同 > < 回 > < 回 > < 回 > <

Graphing Exponential Functions

When b > 1, the graph of $f(x) = b^x$ has the same basic shape as 2^x , but may be steeper or more gradual. Let's see what happens when b < 1.

Example

Sketch the graph of $f(x) = \left(\frac{1}{2}\right)^x$.

Negative Powers

Notice that

$$\left(\frac{1}{2}\right)^x = (2^{-1})^x = 2^{-x}$$

so that when b < 1, we can set $b = \frac{1}{c}$ and have c > 1 and

$$f(x) = b^x = \left(\frac{1}{c}\right)^x = c^{-x}.$$

So, we can always keep the base larger than 1 by using a minus sign in the exponent if necessary.

-

< ロ > < 同 > < 回 > < 回 > < 回 > <

Property (Graphical Properties of Exponential Functions)

The graph of $f(x) = b^x$, b > 0, $b \neq 1$ satisfies the following properties:

-

Property (Graphical Properties of Exponential Functions)

The graph of $f(x) = b^x$, b > 0, $b \neq 1$ satisfies the following properties:

• All graphs pass through the point (0, 1).

Property (Graphical Properties of Exponential Functions)

The graph of $f(x) = b^x$, b > 0, $b \neq 1$ satisfies the following properties:

- All graphs pass through the point (0, 1).
- 2 All graphs are continuous.

→ ∃ → < ∃ →</p>

< A >

Property (Graphical Properties of Exponential Functions)

The graph of $f(x) = b^x$, b > 0, $b \neq 1$ satisfies the following properties:

- All graphs pass through the point (0, 1).
- 2 All graphs are continuous.
- The x-axis is a horizontal asymptote.

化原因 化原因

< A >

Property (Graphical Properties of Exponential Functions)

The graph of $f(x) = b^x$, b > 0, $b \neq 1$ satisfies the following properties:

- All graphs pass through the point (0, 1).
- 2 All graphs are continuous.
- The x-axis is a horizontal asymptote.
- b^x is increasing if b > 1.

-

・ 同 ト ・ ヨ ト ・ ヨ ト

Property (Graphical Properties of Exponential Functions)

The graph of $f(x) = b^x$, b > 0, $b \neq 1$ satisfies the following properties:

- All graphs pass through the point (0, 1).
- 2 All graphs are continuous.
- The x-axis is a horizontal asymptote.
- b^x is increasing if b > 1.
- **5** b^x is decreasing if 0 < b < 1.

-

< ロ > < 同 > < 回 > < 回 > < 回 > <

Property (General Properties of Exponents)

Let a, b > 0, $a, b \neq 1$, and x, y be real numbers. The following properties are satisfied:

-

Property (General Properties of Exponents)

Let a, b > 0, $a, b \neq 1$, and x, y be real numbers. The following properties are satisfied:

-

Property (General Properties of Exponents)

Let a, b > 0, $a, b \neq 1$, and x, y be real numbers. The following properties are satisfied:

$$\bullet a^{x}a^{y}=a^{x+y},$$

-

Property (General Properties of Exponents)

Let a, b > 0, $a, b \neq 1$, and x, y be real numbers. The following properties are satisfied:

$$\bullet a^{x}a^{y} = a^{x+y}, \frac{a^{x}}{a^{y}}$$

<ロト <同ト < 国ト < 国ト

Property (General Properties of Exponents)

Let a, b > 0, $a, b \neq 1$, and x, y be real numbers. The following properties are satisfied:

•
$$a^{x}a^{y} = a^{x+y}, \frac{a^{x}}{a^{y}} = a^{x-y},$$

-

Property (General Properties of Exponents)

Let a, b > 0, $a, b \neq 1$, and x, y be real numbers. The following properties are satisfied:

•
$$a^{x}a^{y} = a^{x+y}, \frac{a^{x}}{a^{y}} = a^{x-y}, (a^{x})^{y}$$

-

Property (General Properties of Exponents)

Let a, b > 0, $a, b \neq 1$, and x, y be real numbers. The following properties are satisfied:

•
$$a^{x}a^{y} = a^{x+y}, \ \frac{a^{x}}{a^{y}} = a^{x-y}, \ (a^{x})^{y} = a^{xy},$$

Property (General Properties of Exponents)

Let a, b > 0, $a, b \neq 1$, and x, y be real numbers. The following properties are satisfied:

•
$$a^{x}a^{y} = a^{x+y}, \frac{a^{x}}{a^{y}} = a^{x-y}, (a^{x})^{y} = a^{xy}, (ab)^{x}$$

Property (General Properties of Exponents)

Let a, b > 0, $a, b \neq 1$, and x, y be real numbers. The following properties are satisfied:

•
$$a^{x}a^{y} = a^{x+y}, \frac{a^{x}}{a^{y}} = a^{x-y}, (a^{x})^{y} = a^{xy}, (ab)^{x} = a^{x}b^{x},$$

Property (General Properties of Exponents)

Let a, b > 0, $a, b \neq 1$, and x, y be real numbers. The following properties are satisfied:

•
$$a^{x}a^{y} = a^{x+y}, \frac{a^{x}}{a^{y}} = a^{x-y}, (a^{x})^{y} = a^{xy}, (ab)^{x} = a^{x}b^{x}, (\frac{a}{b})^{x}$$

-

Property (General Properties of Exponents)

Let a, b > 0, $a, b \neq 1$, and x, y be real numbers. The following properties are satisfied:

•
$$a^{x}a^{y} = a^{x+y}, \frac{a^{x}}{a^{y}} = a^{x-y}, (a^{x})^{y} = a^{xy}, (ab)^{x} = a^{x}b^{x}, \left(\frac{a}{b}\right)^{x} = \frac{a^{x}}{b^{x}}$$

-

Property (General Properties of Exponents)

Let a, b > 0, $a, b \neq 1$, and x, y be real numbers. The following properties are satisfied:

1
$$a^x a^y = a^{x+y}, \frac{a^x}{a^y} = a^{x-y}, (a^x)^y = a^{xy}, (ab)^x = a^x b^x, \left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$$

2 $a^x = a^y$ if and only if $x = y$

-

Property (General Properties of Exponents)

Let a, b > 0, $a, b \neq 1$, and x, y be real numbers. The following properties are satisfied:

1
$$a^{x}a^{y} = a^{x+y}, \frac{a^{x}}{a^{y}} = a^{x-y}, (a^{x})^{y} = a^{xy}, (ab)^{x} = a^{x}b^{x}, \left(\frac{a}{b}\right)^{x} = \frac{a^{x}}{b^{x}}$$

2 $a^{x} = a^{y}$ if and only if $x = y$
3 $a^{x} = b^{x}$ for all x if and only if $a = b$

-